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A lifting-line formulation that makes possible the simulation of wings with sweep is pre-
sented; such formulation is based on modern adaptations of the classical theory and uses a
nonlinear scheme to incorporate the influence of viscosity from real airfoil data on the wing lift
and drag coefficients. The nonlinear scheme strictly satisfies the Pistolesi Boundary Condition
over the control points at each iteration. The numerical accuracy of the method is verified
through a standard procedure and the tool is consecutively validated against experimental
data from several wings, each of which with a different planform. Satisfactory convergence
rates, errors and uncertainties are obtained from the verification procedures and, for all wings,
the agreement with experimental data are within a few percent. The results corroborate the
reliability of the proposed formulation.

I. Nomenclature

b wing span (m)

co = chord at the root of the wing (m)

Ce = axial section force coefficient

Cp = wing drag coefficient

CL = wing lift coefficient

CLE = extrapolated value of the numerical lift coefficient

Cn, = slope of the C,, X a curve (%) (l)

GCa,,,, = slopeof the viscous G, X a curve (%) (l)

Cnp,, = ‘potential’ normal section force coefficient

Cny;. = ‘viscous’ normal section force coefficient

C, = normal section force coefficient

C = constant of the function obtained with the Richardson Extrapolation
c = airfoil chord (m)

Ep, = absolute error

Ey, = relative error

F = safety factor of the Grid Convergence Index

f(hy) = value of the function, obtained from the Richardson Extrapolation, at the representative grid size Ay
Jext = extrapolated function value of the Richardson Extrapolation
GCI = Grid Convergence Index

hn = representative grid size

i = control point/vortex index

J = control point/vortex index

k; = index of the horseshoe vortex segment

k = constant of the numerical uncertainty
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My = free-stream Mach number

M = section Mach number

M = influence matrix (%)

m = element of the influence matrix M (%)

N = number of horseshoe vortices

p = order of convergence of the Richardson Extrapolation

Reo, = free-stream Reynolds number

Re = section Reynolds number

Fijik: = length vector from the k%" edge of the j horseshoe vortex to the i’ control point (1)

JoKj J
r = mesh refinement ratio
Uy = normal-to-the-planform unit vector
Unum, = absolute numerical uncertainty
Unum, = relative numerical uncertainty
Vus = velocity induced by an entire horseshoe vortex (%)
Vry = velocity induced by all the trailing vortices plus the free-stream velocity (%)
Vs = velocity induced by a straight vortex segment (2)
Vo = free-stream velocity ()

v = overall velocity at a control point ()

v = auxiliary vector (%

Weo = normal component of the free-stream velocity (2)
W = normal component of the free-stream velocity throughout the wing (%)
S, = wing planform area (m?)

Xep = chordwise control point location (m)

Yep = spanwise control point location (m)

Zep = normal-to-the-planform control point location ()
eff = wing section effective angle of attack (°)

a = geometric angle of attack (°)

aro = airfoil zero lift angle of attack (°)

AF = section aerodynamic force vector (N)

A = planform area of the corresponding wing section (m
5 planf f th ponding wing secti 2
0y = bound vortex vector length (m)

2

r = circulation at a control point (mT)

2
r = circulation distribution throughout the wing ('”T
A = sweep angle (°)
Q = under relaxation factor
el = free-stream density (%)
] = angle between \7VT and (_fl (°)

II. Introduction

He conceptual aerodynamic design of wings is a phase that requires a balance between cost and accuracy: the
Taerodynamic tools used must provide reliable results relatively fast so as to cover a range variables of design. In this
context, the selection of the appropriate tool is fundamental; while it cannot be too time consuming, its outputs must
present errors within an engineering error acceptable range.

Among the various existing numerical methods, there is increasing interest in the so called Computational Fluid
Dynamics (CFD) methods. They usually refer to numerical tools in which the flow field is specified through an Eulerian
formulation and the physical domain is discretized using finite differences, finite elements, or finite volumes schemes.
During the last decades, considerable advances in the application of CFD to the analysis and design of wings have
been made; although CFD has not reached a fully confidence level, it is gradually gaining acceptance from academia
and industry. Presently, however, these methods are limited in application due to the increased computational cost, the



reason they are often more interesting during the more advanced design phases.

On the other hand, modern lifting-line (LL) methods are a compromise between cost and accuracy. While not having
the same level of detail as CFD, the current LL. methods are still capable of predicting important features of the flow past
wings; moreover, they are generally less computationally expensive, a feature that makes LL attractive for use during
preliminary stages. These methods, however, evolved from simple potential flows to more sophisticated formulations in
which viscosity and compressibility are considered on the wing design variables. In fact, current research in the field
has even shown, for instance, that there is significant advantage in coupling LL with other numerical methods in order to
reduce computational time of complex simulations [1]].

Historically, the Lanchester-Prandtl’s lifting-line was crucial to modern aerodynamics and brought insightful results
that allowed several advances in wing design [2]]; the original theory, however, is of limited application and the urge for
wings with arbitrary geometries flying at high speeds have made the classical lifting-line gone through improvements in
order to account for these needs [3]].

Since its conception, several adaptations have been proposed to account for the effects of viscosity and the generality
of wing geometries [4H13], among other interests. From the formulations proposed, Weissinger, using the earlier results
of Pistolesi [14], developed a lifting-line for wings with arbitrary geometries: while the wing sections are represented by
the usual 7 line, the control points are placed along a 3TC line, where the flow-tangency condition, more commonly
known as Pistolesi Boundary Condition (PBC) is imposed [4]]. With impressive results, Weissinger’s lifting-line has
later been widely used [15, (8L 9, [12}, [13 [15]].

The attempts to incorporate viscous effects on lift and drag, however, did not follow Weissinger’s idea; while many
authors used the ‘ — % ’ representation, the accompanying nonlinear scheme usually used an equivalence between the
potential lift (from the Kutta-Joukowski Theorem) and its viscous counterpart (from the definition of lift coefficient and
the use of airfoil real data) as a requirement to correct I', leaving the PBC relaxed [9} [11} [13]. Moreover, the scheme
generally needed a substantially low damping factor, so several hundred iterations were necessary for convergence [16].

Concomitantly to these attempts, a nonlinear scheme that strictly satisfied the PBC was proposed [17], and some
works reported its implementation [16, [18]]; the results from different authors were dissident, and no conclusion about
the effectiveness of such could be drawn. Later and consequently, a novel scheme inspired on [17] was proposed [[19]
and it was reported to present adequate results; however, the lifting-line formulation of [19]], used horseshoe vortices
(HSV) that were not adequate for the imposition of the PBC. Thus, the author reported issues related to the convergence
of the method.

Given the advantages of Weissinger’s lifting-line for arbitrary geometries and its need to satisfy the PBC, and also
the promising results of the nonlinear scheme proposed in [19], this work presents a nonlinear lifting-line formulation
suitable for wings with sweep, in which the effects of viscosity on lift and drag are considered through airfoil data. In
the next sections, a well-founded choice of the HSVs is presented followed by the formulation of the method. Next, code
and solutions verifications are presented and the results show favorable convergence rates, errors, and uncertainties for
all planforms evaluated. Validation of the method is performed against experimental data for four different wings and
the small percentage difference substantiates the efficiency of the method for the proposed cases.

II1. Choice of the Appropriate Horseshoe Vortex

For the current lifting-line formulation, three candidates for the horseshoe vortices (HSV) were assessed, and their
geometries are presented on Fig. [T]

The HSV ‘a’ was initially adopted as it was used on previous works [21]. Although suitable for formulations in
which the control point (CP) is placed over the bound vortex [10]], this HSV does not work properly when the CP must
satisfy the PBC: the circulation distribution becomes unstable and leads to divergence as the mesh is refined (Fig. [2).
Such instability can be physically explained with the aid of Fig.[3| which presents the respective parts of the HSVs ‘@’
and ‘b’ that remain over the wing planform. For the sake of explanation, the HSVs have unitary circulation and the
induced velocities are qualitatively represented by the numbered arrows; on a) the velocities induced by the segments
over the spanwise outermost CPs are lower than over the innermost, implying that the final I distribution is higher at the
tips. This effect increases with the angle of attack, as the free trailing vortices become less influential. If, instead, a
trailing leg extends from the quarter chord-line to the trailing edge on each HSV, as on ‘b’, an additional contribution
makes the velocity induced at the tips highly increase, while the increase near the root is not as intense. This makes I"
descreases towards the tips and improves numerical stability. (Fig. ).

Therefore, between HSV ‘a’ and ‘b’, the second has been proven to be the appropriate. In comparison to HSV
‘c’, while there is no such straightforward advantage in using one over another, an important consideration about the



Fig. 1 Possible HSV models. a) The trailing vortices are shed into the free-stream direction from the bound
vortex. b) Part of the trailing vortices remain over the planform, while the other part are shed into the free-stream
direction. c¢) The trailing vortices are shed into the wing-planform-plane direction [20].

251

N
o

=
a1

=
o

[&)]

Circulation Distribution, m2/s
o
I

'
ol
T

| | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Span

KN
o

o

Fig.2 Behavior of I" as N is increased for the HSV ‘a’ of Fig.

physics of the flow is that the trailing vortices must be shed into the flow towards the free-stream direction so that no
aerodynamic forces act on them [20]. Although for very small a such consideration can be assumed to be true for HSV
‘c’, as the angle of attack increases this assumption can no longer be valid. Therefore, in order to correctly satisfy the
physics behind the formulation, HSV ‘b’ was chosen as the singularity element.
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Fig. 3 Parts of the HSVs that stay on the wing planform regardless of the AoA. The arrows (from left to
right) qualitatively represent the induced velocities of the HSVs (from top to down). The numbers represent the
magnitude of the induced velocities at the specific CP (1 is the strongest).
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Fig.4 Behavior of I" as N is increased for the HSV ‘b’ of Fig.

IV. Lifting-Line Formulation
Divided into linear and nonlinear schemes, the present lifting-line method is inspired on the works of [10} 19, 20];
the current formulation is suitable for wings with arbitrary quarter-chord lines, and it also accounts for the effects of
viscosity on lift and drag up to stall region.



A. Linear Scheme

After defining the appropriate HSV, the wing and its wake are represented as depicted in Fig. [5} the bound vortices
lay over the wing 7 line, part of the trailing vortices remains over the wing planform, and the other part is shed towards
the free-stream direction (into infinity). The velocity induced by a segment j (with vertices k; and k;, and circulation
I';) over a point i can be analitically calculated with Eq. () [10. 20]:

Fig. 5 Representation of the wing by a series of HSVs. For each HSV, the segment 2-3-4-5 remains over the
wing planform, whereas the segments 1-2 and 5-6 are shed towards the free-stream.

. r; (|7ij,k,-| + |7ij,k,+1|) (Fij,kj X 7ij,k,+1)
VVS[j,kjijrl = E N N N N (1)
|7k | Fijobej 11 (|Vij,kj||rij,k_,-+1| + Fijk; 'Vij,k_,-+1)

such that the velocity of the entire horseshoe over i is given by the sum of all the individual contributions, according to
the principle of superposition:

5 I,
= > J =
VHSij = Z Vvsij,kjij = EVU 2)
k=1
5 (|7ij,kj| + |7ij,kj+1|) (’_’}j,kj X 7ij,kj+1)
Vij = 3)

k=1 17k iy +1] (|7ij,kj||?ij,kj+1| +Tijk; '?ij,kj+1)

The total velocity at i is the superposition of the velocity induced by the N HSVs and the free-stream velocity Vo

N
Vi =V + > Vs, )

If the PBC is applied, the normal component of the velocity on Eq. (@) must be zero:

N
Ui+ Vi=0— Zﬁm"VHSij = ~iipi * Voo (5)
J=1
Equation (3]) can be more conveniently written with the aid of the rightmost expression of Eq. (Z):

N
D migTy = =47 X Weoi (6)
i=

Mij = i * Vij

Wooi = Up;i * Voo



For each HSV there must be a corresponding control point (CP) at which the PBC is satisfied. Hence, Eq. (0) is
imposed to the N CPs, and the resulting system of equations can be written in a matrix form:
MIC = -Wq, (N

I’ can be obtained by solving Eq. (7)), and the aerodynamic forces (and corresponding coefficients) are calculated
considering only the influence of the trailing vortices [20]:

N
Vrvi = Voo + Z (VHSU - Vvs,»j,M) ®)

=
AF; = piVeyi X 61i — |AF;| = p|Ti||Vryi]|67:] sin 6; )

The Prandtl’s hypothesis is assumed to be true and a three dimensional version of the Kutta-Joukowski theorem is

used on Eq. (@) [10]. Finally, if Cy,._,; is written as the definition of the 2-D normal force coefficient, an expression in
terms of I'; is obtained:

AR |Tilléiil sin6;
IolVivil?eA;  LIVrviloA;

npori —

(10)

B. Nonlinear Scheme

In the present nonlinear scheme, viscosity is incorporated by moving the CP into the chordwise direction along the
planform wing surface and imposing the PBC at the new location. This process effectively changes the coefficients m;;
and physically approximates the curves Cy,; X @; and Cy,,, ;i X @;, as shown on Fig. [6]
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Fig. 6 Scheme for the nonlinear formulation. The control points chordwise locations determine the slopes of
the curves C,,,,.

Originally, the PBC was derived under the assumption of a flat-plate airfoil [14]], whose slope C;,, is 27; if a wing
section is such that G, ,; # 27, x.p; must be changed accordingly to reflect the differences:

3 Cn(,i
Xepi = 3= ~Ci (11)

Yepi and z¢p; must be changed accordingly to ensure that the CP remains over the wing planform. The linear process
is then repeated to obtain a new estimate for C,,,,;; this step is necessary to ensure that PBC is satisfied for the new CP
location. The effective angle of attack is then calculated with Eq. (12):



C .
Aeffi = npofl + @ro; (12)
Nal
Viscosity is incorporated on lift by real airfoil data as a function of (aeyy ), (M;), and (Re;). These data are generally
obtained from experiments or numerical simulations and presented in terms of the airfoil aerodynamic normal force
coefficient:

Cnv[si = Cnvl's (aeffi’ Mi? Rei) . (13)
Cpy,.i is compared with C,,_,;; if they do not agree to within a specified tolerance, a viscous C,; is calculated
from G, ;:
Cn ig‘i
hayg i = (14)
: Qeffi — ALOI
Equation (I4) assumes that C,,,,,, ; has a linear behavior; hence, the nonlinear formulation is only suitable until stall

region. Finally, C,_; is updated accordmg to Eq. (T3):

Cnai - QCnal + (1 - Q) C’l (15)

XVis
Q tipically assumes the value of 0.8. The nonlinear process is repeated until convergence is achieved. C; is concomitantly
calculated through the same 2-D data. This coefficient, however, is not used on the iterative process, but only on the
post-processing calculations, and it is related to the airfoil viscous drag contribution on the wing lift and drag; for
inviscid cases C.; = 0.

C. Lift and Drag Coefficients

The wing lift and drag coeflicients are obtained from the values of C, and C.. For each of these values, a
corresponding transformation, in terms of the geometric and the effective angles of attack (from local to global
coordinates) must be performed.

N

CL= oA D VP A [Cuy c0s (@ = @epsi) = Cey sin (@ = acggi) ] (16)
00 roi=1
N

Cp = 7 |2 D VPO A [Cpy sin (@ = @epyi) + Ce, 008 (@ = aepsi) ] (17)
Veo SV i=1

As expected, the inclusion of viscous drag increases the overall drag whilst it decreases the lift.

D. Flowchart of the formulation
The following flowchart illustrates the method described in this section. The dashed lines represent the path the
linear formulation takes, whereas the continuous ones, the path for the nonlinear formulation:

V. Results

According to the ASME V&V 20 Committee [22], validation is necessary to determine the accuracy of a given
numerical method in representing the physics at which it has been intended. Prior to validation, however, code and
solution verifications must be performed to any numerical method in order to ensure its reliability. Verifications were
done by systematically refining the discretization and either observing the behavior of the numerical solution, or
comparing it with theoretical results, when available. The theoretical result of the elliptical planform wing served as a
benchmark for the verification of the linear formulation, whereas for the nonlinear two other geometries were used. For
validation, the numerical results were compared to experimental data from the literature [23} 24].
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Fig. 7 Flowchart of the WLL indicating both linear and nonlinear schemes on the formulation and their
interaction.

A. Code and Solution Verification

Both evaluation and estimation of the error were performed through the Richardson Extrapolation procedure;
as systematic grid refinement was necessary, a family of grids with the coarsest half wing discretization having 28
elements and the finest one having 904 was constructed. The number of HSVs was consecutively increased by a ratio
of approximately V2, a value recommended by the committee [22]]. The number of elements was represented by a
refinement ratio r, according to Eq. r = 1 relates to the finest grid and » = 0 to an extrapolation in which N tends to
infinity.

hy
r= (18)
hNMax
For the present formulation, /2y assumed the definition of Eq. (T9):
S 116l
hy = =20 (19)

The behavior of the solution that is in the convergence region was assumed to follow Eq. (20); from the expression,
fitting curves were plotted against r.

f(hN) = foxt + ChY, (20)

Therefore, either Ej,, or Ej, was evaluated simply by calculating the difference

Ep, = |fext = f (hnl/ | fext|  En, = |fext = f (hn) 21

whereas the corresponding uncertainty (#num, Of Unum,) Was estimated through a Grid Convergence Index (Eqns. [22]

and 23):

Fs X |f (hNpas) = f (ANpar—1)]

GClr= [ NNpmax :IP -1 (22)
h(Nmax—l)
Unum, = GCI/(k X fext) Unum, = GC[/k (23)



Table1 Wings geometric properties.

Property Case | Case 11 Case III
Wing Planform  Elliptical Straight Straight
Wing Section Flat plate NACA 0012  Flat plate

b (m) 2.0544 5.900 2.4892
co(m) 0.3566 1.00 0.5080
A (deg) 0 0 45

The assigned values for F and k were 1.25 and 1.1, respectively, so that a conservative uncertainty could be estimated.
The characteristics of the three wings used as benchmarks are summarized on table [T)and their planforms are illustrated
on Fig. E} Furthermore, C;, was used as variable of comparison.
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Fig. 8 Wing planforms for code and solution verifications: on each wing, the leading edge is the leftmost line.

Additionally, the literature reports evidence about the influence of the spanwise discretization on the rate of convergence;
while in [20] it is suggested a spatial equispaced discretization for both the HSVs and the CPs, in [10] it is claimed
that cosine clustering for both HSVs and CPs is preferred for its efficiency. The latter authors also claim that denser
clustering is needed whenever there are discontinuities at the quarter-chord line, since rapid changes in I" happen at
these locations. Given the dissidence, three clustering schemes were evaluated: the equispaced (EHEP - Equidistant
HSV, Equidistant CP), the cosine (CHCP - Cosine HSV, Cosine CP), and a combination in which the HSV's have a
cosine distribution and the CPs are placed midway the trailing segments of the HSVs (CHEP - Cosine HSV, Equidistant
CP). Figure []illustrates the three discretizations.

The flat-plate elliptical-planform wing (table[I] case I) was chosen due to the existence of theoretical solution
under potential flow conditions [6]]; the planform shape is also interesting to assess the method given the variable
chord distribution. Figure|10|shows the numerical Cy, as function of A4y and as a percentage of the theoretical value
(the horizontal line at C;, = 100%); a zoom in the convergence region is presented on the right plot, where both
the extrapolated values and numerical uncertainties for the finest grids are highlighted. While the theoretical Cr, is
approximately 0.6599, for the EHEP and CHEP the Cr,,. found were 0.6656 and 0.6655, respectively. The corresponding
p were approximately and 1.05 and 0.98, values that indicate first order convergence accuracy, which is satisfactory,
according to [22]]. In terms of percentage difference, both Cr,. were approximately 0.08 % offset from the theory.
Finally, for the CHCP no smooth convergence was observed with RE procedure, although it is evident from the figure
that the trend for this clustering was better than for the two others; a different verification procedure is thus necessary in
this case.

The NACAO0012 straight-planform wing under viscous flow (table[I] case II) was chosen to evaluate the nonlinear
scheme when effects of viscosity are incorporated. A straight planform wing was used to keep the variations in Re
small throughout the wing, since large variations could lead to a possible source of error from the 2-D aerodynamic

10
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Fig. 10 a) Cy, versus r for the elliptical wing under potential flow (V,, ~ 74.68 m/s, a = 8°, Case I). The symbols
are the numerical C;, the lines are the fitting curves obtained through RE, and the horizontal line at C;, = 100%
is the theoretical solution. b) Zoom of the convergence region.

data. Once more, Fig.|11|shows the numerical Cy, as the grid is refined, and the graph on the right is a zoom in the
convergence region. The extrapolated lift coefficient and the rate of convergence were approximately 0.5972 and 1.00
for both EHEP and CHEP discretizations. No smooth convergence was observed for CHCP with RE, although it is clear
again that it seemed to presented a better convergence behavior than the others.

Finally, the flat-plate 45°—sweptback wing under potential flow (table[I} case IIT) was chosen to assess the method

11
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Fig. 11 a) C versus r for the straight wing under viscous flow (V,, ~ 49.67 m/s, a = 8°, Case II). The symbols
are the numerical C; , whereas the lines are the fitting curves obtained through RE. b) Zoom of the convergence
region.

behavior when three dimensional effects are more intense. From Fig.[I2] all Crg were approximately 0.4502, and p
for EHEP and EHCP were, correspondingly, 1.0024 and 0.9980. For this case, CHCP convergenced with the RE and,
corroborating the expectations, p was significantly higher (p ~ 2.00), a value that indicates that the PLL converges at
approximately the theoretical rate with this clustering; thus, the behavior of the solution in the convergence region is
close to asymptotic.

B. Validation

The present lifting-line was validated against experimental data from the literature [23H25]]. The discretization was
set to 320 elements per semi-span. To have the same wing planform as reported in the experiment, for the elliptical
wing, a straight rectangular inboard section segment is added, whereas both b and ¢y remain unchanged; therefore, for
half span, in the spanwise direction from O to approximately 0.183 m the planform is straight, while from 0.183 m to
1.0272 m the planform follows an elliptical distribution (Fig.[I6] case IV). The straight and sweptback wings remained
the same.

For the elliptical wing, Req, ~ 2.11 x 10° with respect to ¢ (or 1.70 x 10° with respect to the mean aerodynamic
chord) and M, = 0.27. The experimental data are from [25]: boundary-layer transition mechanisms were placed along
the wing span, at 5% of the chord (in the free-stream direction) over both the upper and the lower surfaces, so the flow
was assumed to be turbulent; additionally, in most of the @ range, the increment in the angle of attack was 0.5°. For the
numerical simulations, the source of airfoil data was the Star-CCM+ Computational Fluid Dynamics (CFD) software:
only C, data were used, because the large variations in Re would require a more detailed study (related to turbulence
models, for instance); therefore, since it is believed that the variations in C. are small, a constant value of 0.01293 was
assumed for all wing sections and simulated angles of attack.

In terms of the coefficients, the agreement is satisfactory over all the « range, apparently becoming subtly worse for
higher angles of attack. Nevertheless, the differences are no higher than 2.2 % for both Cy, and Cp, according to Fig.[13]

For the straight wing, Re., = 3.17 X 10° and M., ~ 0.15. The experimental data are from [24]]: turbulence was
enforced at about 5 cm downstream the wing leading edge as to have an essentially turbulent flow. For the numerical
method, the source of airfoil data was again the Star-CCM+. Figure[I4]shows the trends for C; and Cp as function of «.
For both Cr, and Cp, a satisfactory agreement happens between the current lifting-line and the experimental data in the

12
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Fig. 12 a) C,. versus r for the 45°—sweptback wing under potential flow (V., ~ 51.81 m/s, a = 8°, Case III).
The symbols are the numerical C;, whereas the lines are the fitting curves obtained through RE. b) Zoom of the
convergence region.
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Fig. 13 a) Cf versus a. b) Cp (right) versus a. Elliptical wing (Case IV).

12

entire o range; the maximum difference for Cr, is about 7.0 %, while for Cp is about 8.0 %; the stalled region was not
simulated due to the limitations of the nonlinear scheme.

For the 45°—sweptback wing, Re, ~ 1.68 x 10 and M., ~ 0.15. The experimental data are from [23]]: both lift and
drag coefficients were obtained through graphical integration of the pressure measurements along the wing; furthermore,
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Fig. 14 a) Cr versus a. b) Cp (right) versus a. Straight wing (Case II).

the experiments were conducted until @ =~ 10°. For the lifting-line, the source of 2-D data was the software XFOIL [26].
In terms of Cy, the agreement is satisfactory for all the @ range, a result that sustains the accuracy of the method. In
terms of Cp, for low angles of attack, however, the agreement is slightly worse; while there is satisfactory agreement for
high angles of attack, for @ ~ 2° and @ = 4° it is not as satisfactory. The maximum differences for both Cy, and Cp
are about 3.0 % if the lower « region is ignored for the Cp. A previous work had demonstrated the importance of the
accuracy of the source of aerodynamic data on the lifting-line, and thus given the possible explanation for such trend
[21]: for high a, the predominance is from the induced drag (and thus the close agreement), and as « decreases, the
contribution of the viscous drag becomes more substantial, and differences might arise if the 2-D data are not sufficiently
accurate due to the suitability of the turbulence models.

As a final validation case, and to demonstrate the capability of the method in simulating swept wings and the
influence of viscous effects on lift and drag, a crescent wing with variable sweep throughout the span was simulated
(Fig.[I6] Case IV). The difference between this wing and the elliptical is the sweep angle distribution; the span, chord
at root, inboard section segment, aspect ratio, and arifoil sections are equal. The data are also from [25]], and the
experimental set-up was kept the same, with the only difference in the placement of the trips to enforce turbulence.
Such validation was performed to test the method for a more general chord and sweep distribution.

For the crescent wing, Req, ~ 2.11 x 10° with respect to co (or 1.70 x 10° with respect to the mean aerodynamic
chord) and M, = 0.27. The source of aerodynamic data was again Star-CCM+, and it was accounted in the same way
as for the elliptical. Although subtly worse than in the elliptical wing, the agreement is still suitable in predicting C,
and Cp, a result that corroborates the appropriateness of the method. The maximum differences for Cy and Cp are
about 5.0 %, with the differences increasing with the angle of attack.

VI. Conclusion

A novel wing lifting-line formulation was proposed, in which a nonstandard horseshoe vortex geometry is used.
Such geometry was shown to be the most appropriate in terms of stability of the solution and representativeness of
the physical assumptions behind the theory. The formulation also uses a nonlinear scheme that incorporates real data
from airfoil by approximating the potential and viscous C,, X @ curves through changes in the control points chordwise
locations, so the PBC remains satisfied.

Code and solution verification procedures featured the reliability of the proposed method: the solutions converged
satisfactorily when a variable chord distribution wing was simulated, when viscous effects were incorporated, and
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Fig. 15 a) Cr versus a. b) Cp (right) versus a. 45°—sweptback wing (Case III).
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when 3-D effects were more prominent. Moreover, three clusterings were evaluated and, while all converged with a
satisfactory rate, CHCP presented significantly better results.

Validation against experimental data showed reasonable agreement overall; this confirmed the accuracy of the
nonlinear lifting-line in predicting lift and drag for a variety of geometries: an elliptical wing, a straight wing, and a
45°—sweptback were used for validation and the highest relative error was no greater than 7.0% for Cr, and 8.0% for Cp,.
Sequentially, a crescent wing with both variable chord and sweep distributions was simulated and the results also agreed
with experimental data to within a small percentage difference.
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Fig. 17 a) Cr versus a. b) Cp (right) versus a. Crescent Wing (Case IV).

Given the results obtained, the proposed method seems to a good option as a tool for preliminary wing design. As a

future work the authors expect to extend the present formulation to the case of propellers.
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